Game Theory
Lecture 09

LP Duality and the Minimax Theorem



A toy example to illustrate duality

max ry + I's

subject to

dry + a9 < 2
r1 + 220 < 1
z1 > 0
Ty > 0.

mgz()

direction of
objective function
dri + 22 <2

.

 What's an easy and convincing proof that the optimal objective
function value of the linear program can't be too large?

r1+ 29 < 4 + T2 <
N

objective

constraint instead

e Can we do better?
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But actually, it's obvious that we can do better by using the second

r1+ 22 <1+ 209 < 1,

» There's no reason we need to stop at using just one constraint at a
time, and are free to blend two or more constraints.

» The best blending takes 1/7 of the first and 3/7 of the second to

T1+ Ty < % (41 + 29) +% (21 + 2a9)
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» This Is a convincing proof that the optimal objective function value is at most
5/7. Given the feasible point (3/7;2/27) that actually does realize this upper
bound, we can conclude that 5/7 really is the optimal value for the LP.



The Dual Linear Program

 We now generalize the ideas of the previous slide. Consider an
arbitrary linear program (call it (P)) of the form:

T
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Matrix-Vector Notation

subject to 2 :'-’1’1;;*3'3' < by max ¢l x
j=1 subject to
“ Ax <b
E (24 i ()g
— x > 0.
J=1 )
< where ¢ and x are n-vectors, b Is
. N an m-vector, A is an Mxn matrix
0o < b (of the a;'s), anc_i the Inequalities
Z myTy = o are component-wise.
j=1
i B U'n E ().

« Remember our strategy for deriving upper bounds on the optimal
objective function value of our toy example:

» take a nonnegative linear combination of the constraints that
(component-wise) dominates the objective function.

» In general, for the above linear program with m constraints, we
denote by y; y,,=0 the corresponding multipliers that we use.



The Dual Linear Program (Cont’d)

* The goal of dominating the objective function translates to the
conditions m

> yiai; > (x)
i=1
for each objective function coefficient (i.e. for j = 1,2,....n).

In matrix notation, we are interested in nonnegative m-vectors
> 1 : | [ | s B
y > 0 such that ATy > ¢

note the sum in ( * ) is over the rows i of A, Whlch corresponds to

an inner product with the jth column of A or equivalently with
the jth row of A*.

By design, every such choice of multipliers 1, ..., Uy 1mplies an
upper bound on the optimal objective function value of the
linear program : for every feasible solution (1, ..., %,),
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The Dual Linear Program (Cont’d)

» Alternatively, the derivation may be more transparent in matrix-
vector notation: < (ATy)'x = y'(Ax) < y'b.

T'he upshot is that, whenever y > 0 and ( % ) holds,

T

OPT of (P) <) by
i=1

* Obviously, the most interesting of these upper bounds Is the tightest
(1.e., smallest) one. So we really want to range over all possible y's
and consider the minimum such upper bound.

» Here's the key point: the tightest upper bound on OPT is itself the
optimal solution to a linear program. Namely:

m m
min E b;y; subject to E a;1Y; > Ci
=1 1=1
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The Dual Linear Program (Cont’d)

In matrix-vector form:

min b’y

subject to

Aly >c
y =2 0.

This linear program is called the dual to (P), and we sometimes

D).

denote it by (

For example, to de:

we just swap

rive the dual to our toy linear program.

‘he 0]

transpose of t.

bjective and t.

max rqy + Io

subject

4351 —f—ﬂf2§2
r1 + 219 < 1

to

X Z 0
X9 Z 0.
The objective function values of the feasible solutions (1,0), (0, 1),

he right-hand side and take the

ne constraint matrix:

min 21, + 12
subject to

4y + 12 2 1
U1+ 2y2 > 1

Ui, Y2 Z 0.

_, 1 3 _, 5 4
and (;,} ?) (of 2, 1, and %) correspond to our three upper bounds-



Weak Duality

The following important result follows from the definition
of the dual and our derivation

(Weak Duality) For every linear program of the form (P) and
corresponding dual linear program (D),
OPT value for (P) < OPT value for (D).
et < ply*

The LP Duality Theorem

Theorem( “Strong Duality”, von Neumann'47) One
of the following four situations holds:
1. Both the primal and dual LPs are feasible, and for

any optimal solutions 2™ of the primal and y* of
the dual;

CTCU* _ bTy*

2. The primal is unbounded and the dual is infeasible.

3. The primal is infeasible and the dual is unbounded.

4. Both LPs are infeasible.



Complementary Slackness
* Complementary slackness conditions are a corollary of LP
duality, and are another sufficient condition for optimality.
* Let (P),(D) be a primal-dual pair of linear programs.

» If X, y are feasible solutions to (P),(D), and the following
two conditions hold then both x and y are optimal:

(1) Whenever x; # 0, y satisfies the jth constraint of (D) with equality.
(2) Whenever y; # 0, x satisfies the ith constraint of (P) with equality.

« The conditions assert that no decision variable and
corresponding constraint are simultaneously “slack™ (i.e., It
forbids that the decision variable 1s not 0 and also the
constraint Is not tight).

Physical interpretation of complementary slackness

* The objective function pushes a particle in the direction ¢ until it
rests at x*. Walls also exert a force on the particle, and
complementary slackness asserts that only walls touching the
particle exert a force, and sum of forces Is equal to O.
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Proof: Complementary slackness =» optimality
* Recall for every pair x, y of feasible solutions to (P),(D), we have

chzbj Z (Z yaaw) X (1)
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X’s obj fn

= iyz (Z au%) (2)

< Zyibi | (3)

=1
S
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* From the first complementary slackness condition, we have:

m
Citi = E Yitij |

i=1
for each j = 1,...,n (either x; = 0 or ¢; = > " yia;;).

Hence, inequality (1) holds with equality.
» Similarly, the second condition implies that:

Hence inequality (3) also holds with equality:.
Thus ¢’ x = y' b, and implies that both x and y are optimal.
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general recipe for LP duals

« As we've mentioned, different types of Ilinear
programs are easily converted to each other.

* S0 one perfectly legitimate way to take the dual of
an arbitrary linear program Is to first convert it into
the canonical form, and then apply the duality
definition.

 But Iit's more convenient to be able to take the dual
of any linear program directly, using a general

recipe. The high-level points of the recipe are
familiar:

» dual variables correspond to primal constraints,
» dual constraints correspond to primal variables,
» maximization and minimization get exchanged,

» the objective function and right-hand side get
exchanged,

» and the constraint matrix gets transposed.

» The detalls concern the different type of

constraints (Inequality vs. equality) and whether
or not decision variables are nonnegative.
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general recipe for LP duals

* Here Is the general recipe for maximization linear programs:

Primal

Dual

right-hand

1th constraint
1th constraint

1th constrain
r; >
r; <C
T & R

variables z1, ..., x,
m constraints
objective function c

side b

max ¢l x

constraint matrix A

- ].S ﬁﬁ<?)
- ].S iﬁZ??

44 77

1S =

objec

n constraints

variables v, . .

<y Ym

right-hand side c

min b’y

ive function b

constraint matrix A?

o,

* For minimization linear programs, we define the dual as

the reverse operation (from the right column to the left).

* Thus, by definition, the dual of the dual is the original

primal.
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From LP Duality to Minimax

(Minimax Theorem) For every two-player zero-sum game A,

max (minx Ay) — min (maxx Ay) .

X Y Y X

* \We now proceed to derive the Minimax Theorem from
LP duality.

» The first step 1s to formalize the problem of
computing the best strategy for the max-player:

| T o : -
max [ minx' Ay | = max | minx Ae = Imax Hllﬂ (IU% :

X y / X 1=1

Why? Because the min-player never needs to
randomize.

where e; is the jth standard basis vector, corresponding to the
column player deterministically choosing column 7.
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From LP Duality to Minimax
max (min XTAy) = max (nﬁnx Ae; ) = max (Hllﬂ Z jj ’La) :

X y X 7=1

* To get rid of the nested max/min, we recall a trick from
before, that a minimum or maximum can often Dbe
simulated by additional variables and constraints. The
same trick works here, In exactly the same way:

» Specifically, we introduce a decision variable v, intended

T

to be equal to mm Z a;;x; and we will have:

max v
subiect to

T

forall 7 =1,....n

Ti1,....C, >0 and v e R.

* Note that this Is a linear program with optimal (v*, X*). 13



From LP Duality to Minimax

* Repeating the exercise for the column player gives the
linear program:

min w
subject to

A

n
W — E a;;y; = 0 forall =1 .M
j=1

T
D vi=1
j=1
Y, > 0 and w e R.

g —

At an optimal solution (w*,y™*), y* is the optimal strategy for
the column player., assuming optimal play by the row player and
©  w' =min (nﬁx eiTAy) = min (max XTAy> .
y \ i=I y X
Here’s the punch line: these two linear programs are duals.
This can be seen by looking up our recipe for taking duals and
veritying that these two linear programs conform to the recipe
 You will do this verification as an Exercise!
* Accepting this,
"

Strong duality implies that v* = w*;
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