Game Theory
 Lecture 09

LP Duality and the Minimax Theorem

A toy example to illustrate duality

$$
\begin{aligned}
& \max x_{1}+x_{2} \\
& \text { subject to } \\
& 4 x_{1}+x_{2} \leq 2 \\
& x_{1}+2 x_{2} \leq 1 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0 .
\end{aligned}
$$

- What's an easy and convincing proof that the optimal objective function value of the linear program can't be too large?

- But actually, it's obvious that we can do better by using the second constraint instead:

$$
x_{1}+x_{2} \leq x_{1}+2 x_{2} \leq 1
$$

- Can we do better?
$>$ There's no reason we need to stop at using just one constraint at a time, and are free to blend two or more constraints.
$>$ The best blending takes $1 / 7$ of the first and $3 / 7$ of the second to give:

$$
x_{1}+x_{2} \leq \frac{1}{7} \underbrace{\left(4 x_{1}+x_{2}\right)}_{\leq 2}+\frac{3}{7} \underbrace{\left(x_{1}+2 x_{2}\right)}_{\leq 1} \leq \frac{1}{7} \cdot 2+\frac{3}{7} \cdot 1=\frac{5}{7} .
$$

$>$ This is a convincing proof that the optimal objective function value is at most $5 / 7$. Given the feasible point $(3 / 7 ; 2 / 27)$ that actually does realize this upper bound, we can conclude that $5 / 7$ really is the optimal value for the LP.

The Dual Linear Program

- We now generalize the ideas of the previous slide. Consider an arbitrary linear program (call it (P)) of the form:
$\max \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{1 j} x_{j} \leq b_{1} \\
& \sum_{j=1}^{n} a_{2 j} x_{j} \leq b_{2}
\end{aligned}
$$

$$
\leq \vdots
$$

$$
\sum_{j=1}^{n} a_{m j} x_{j} \leq b_{m}
$$

$$
x_{1}, \ldots, x_{n} \geq 0
$$

Matrix-Vector Notation

max $\mathbf{c}^{T} \mathbf{x}$
subject to
$\mathbf{A x} \leq \mathbf{b}$
$\mathbf{x} \geq 0$,

where c and x are n-vectors, b is an m-vector, A is an mxn matrix (of the $a_{i j}$'s), and the inequalities are component-wise.

- Remember our strategy for deriving upper bounds on the optimal objective function value of our toy example:
$>$ take a nonnegative linear combination of the constraints that (component-wise) dominates the objective function.
$>$ In general, for the above linear program with m constraints, we denote by $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}} \geq 0$ the corresponding multipliers that we use.

The Dual Linear Program (Cont’d)

- The goal of dominating the objective function translates to the conditions

$$
\sum_{i=1}^{m} y_{i} a_{i j} \geq c_{j}
$$

for each objective function coefficient (i.e. for $j=1,2, \ldots, n$). In matrix notation, we are interested in nonnegative m-vectors $\mathbf{y} \geq 0$ such that

$$
\mathbf{A}^{T} \mathbf{y} \geq \mathbf{c}
$$

note the sum in $(*)$ is over the rows i of A, which corresponds to an inner product with the j th column of \mathbf{A}, or equivalently with the j th row of \mathbf{A}^{T}.
By design, every such choice of multipliers y_{1}, \ldots, y_{m} implies an upper bound on the optimal objective function value of the linear program : for every feasible solution $\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{aligned}
\underbrace{\sum_{j=1}^{n} c_{j} x_{j}}_{\text {x's obj fn }} & \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} y_{i} a_{i j}\right) x_{j} \\
& =\sum_{i=1}^{m} y_{i} \cdot\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) \\
& \leq \underbrace{\sum_{i=1}^{m} y_{i} b_{i}}_{\text {upper bound }}
\end{aligned}
$$

The Dual Linear Program (Cont’d)

Alternatively, the derivation may be more transparent in matrixvector notation: $\mathbf{c}^{T} \mathbf{x} \leq\left(\mathbf{A}^{T} \mathbf{y}\right)^{T} \mathbf{x}=\mathbf{y}^{T}(\mathbf{A} \mathbf{x}) \leq \mathbf{y}^{t} \mathbf{b}$.
The upshot is that, whenever $\mathbf{y} \geq 0$ and $(*)$ holds,

$$
\text { OPT of }(\mathrm{P}) \leq \sum_{i=1}^{m} b_{i} y_{i}
$$

- Obviously, the most interesting of these upper bounds is the tightest (i.e., smallest) one. So we really want to range over all possible y's and consider the minimum such upper bound.
- Here's the key point: the tightest upper bound on OPT is itself the optimal solution to a linear program. Namely:
$\min \sum_{i=1}^{m} b_{i} y_{i} \quad$ subject to $\quad \sum_{i=1}^{m} a_{i 1} y_{i} \geq c_{1}$

$$
\sum_{i=1}^{m} a_{i 2} y_{i} \geq c_{2}
$$

$$
\vdots \geq \vdots
$$

$$
\sum_{i=1}^{m} a_{i n} y_{i} \geq c_{n}
$$

$$
y_{1}, \ldots, y_{m} \geq 0
$$

The Dual Linear Program (Cont’d)

in matrix-vector form:

$$
\min \mathbf{b}^{T} \mathbf{y}
$$

subject to

$$
\begin{aligned}
\mathbf{A}^{T} \mathbf{y} & \geq \mathbf{c} \\
\mathbf{y} & \geq 0
\end{aligned}
$$

This linear program is called the dual to (P), and we sometimes denote it by (D).

For example, to derive the dual to our toy linear program, we just swap the objective and the right-hand side and take the transpose of the constraint matrix:

$$
\begin{array}{rr}
\max x_{1}+x_{2} & \begin{array}{r}
\min 2 y_{1}+y_{2} \\
\text { subject to }
\end{array} \\
4 x_{1}+x_{2} \leq 2 \\
x_{1}+2 x_{2} \leq 1 \\
x_{1} \geq 0 & \text { subject to } \\
x_{2} \geq 0 . & \begin{array}{r}
4 y_{1}+y_{2} \geq 1 \\
y_{1}+2 y_{2} \geq 1 \\
y_{1}, y_{2} \geq 0 .
\end{array}
\end{array}
$$

The objective function values of the feasible solutions $(1,0),(0,1)$, and $\left(\frac{1}{7}, \frac{3}{7}\right)$ (of 2,1 , and $\frac{5}{7}$) correspond to our three upper bounds.

Weak Duality

The following important result follows from the definition of the dual and our derivation
(Weak Duality) For every linear program of the form (P) and corresponding dual linear program (D),

$$
\begin{aligned}
& \text { OPT value for }(P) \leq \text { OPT value for }(D) . \\
& \qquad c^{T} x^{*} \leq b^{T} y^{*}
\end{aligned}
$$

The LP Duality Theorem

Theorem("Strong Duality", von Neumann'47) One of the following four situations holds:

1. Both the primal and dual LPs are feasible, and for any optimal solutions x^{*} of the primal and y^{*} of the dual:

$$
c^{T} x^{*}=b^{T} y^{*}
$$

2. The primal is unbounded and the dual is infeasible.
3. The primal is infeasible and the dual is unbounded.
4. Both LPs are infeasible.

Complementary Slackness

- Complementary slackness conditions are a corollary of LP duality, and are another sufficient condition for optimality.
- Let (P),(D) be a primal-dual pair of linear programs.
$>$ If \mathbf{x}, \mathbf{y} are feasible solutions to (P),(D), and the following two conditions hold then both \mathbf{x} and \mathbf{y} are optimal:
(1) Whenever $x_{j} \neq 0$, \mathbf{y} satisfies the j th constraint of (D) with equality.
(2) Whenever $y_{i} \neq 0, \mathrm{x}$ satisfies the ith constraint of (P) with equality.
- The conditions assert that no decision variable and corresponding constraint are simultaneously "slack" (i.e., it forbids that the decision variable is not 0 and also the constraint is not tight).

Physical interpretation of complementary slackness

- The objective function pushes a particle in the direction c until it rests at x^{*}. Walls also exert a force on the particle, and complementary slackness asserts that only walls touching the particle exert a force, and sum of forces is equal to 0 .

Proof: Complementary slackness \rightarrow optimality

- Recall for every pair \mathbf{x}, \mathbf{y} of feasible solutions to (P),(D), we have

$$
\begin{equation*}
\underbrace{\sum_{j=1}^{n} c_{j} x_{j}}_{\text {x's obj fn }} \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} y_{i} a_{i j}\right) x_{j} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& =\sum_{i=1}^{m} y_{i}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) \tag{2}\\
& \leq \underbrace{\sum_{i=1}^{m} y_{i} b_{i}}_{\mathbf{y}^{\prime} \text { sobj fn }} . \tag{3}
\end{align*}
$$

- From the first complementary slackness condition, we have:

$$
c_{j} x_{j}=\left(\sum_{i=1}^{m} y_{i} a_{i j}\right) x_{j}
$$

for each $j=1, \ldots, n$ (either $x_{j}=0$ or $c_{j}=\sum_{i=1}^{m} y_{i} a_{i j}$).
Hence, inequality (1) holds with equality.

- Similarly, the second condition implies that:

$$
y_{i}\left(\sum_{j=1}^{n} a_{i j} x_{i}\right)=y_{i} b_{i} \text { for each } i=1, \ldots, m
$$

Hence inequality (3) also holds with equality.
Thus $\mathbf{c}^{T} \mathbf{x}=\mathbf{y}^{T} \mathbf{b}$, and implies that both \mathbf{x} and \mathbf{y} are optimal.

general recipe for LP duals

- As we've mentioned, different types of linear programs are easily converted to each other.
- So one perfectly legitimate way to take the dual of an arbitrary linear program is to first convert it into the canonical form, and then apply the duality definition.
- But it's more convenient to be able to take the dual of any linear program directly, using a general recipe. The high-level points of the recipe are familiar:
$>$ dual variables correspond to primal constraints,
$>$ dual constraints correspond to primal variables,
$>$ maximization and minimization get exchanged,
$>$ the objective function and right-hand side get exchanged,
$>$ and the constraint matrix gets transposed.
$>$ The details concern the different type of constraints (inequality vs. equality) and whether or not decision variables are nonnegative.

general recipe for LP duals

- Here is the general recipe for maximization linear programs:

Primal	Dual
variables x_{1}, \ldots, x_{n}	n constraints
m constraints	variables y_{1}, \ldots, y_{m}
objective function \mathbf{c}	right-hand side \mathbf{c}
right-hand side b	objective function \mathbf{b}
max $\mathbf{c}^{T} \mathbf{x}$	min $\mathbf{b}^{T} \mathbf{y}$
constraint matrix \mathbf{A}	constraint matrix \mathbf{A}^{T}
i th constraint is " $\leq "$	$y_{i} \geq 0$
i th constraint is " $\geq "$	$y_{i} \leq 0$
i th constraint is "="	$y_{i} \in \mathbb{R}$
$x_{j} \geq 0$	j th constraint is " $\geq "$
$x_{j} \leq 0$	j th constraint is " $\leq "$
$x_{j} \in \mathbb{R}$	j th constraint is " $="$

- For minimization linear programs, we define the dual as the reverse operation (from the right column to the left).
- Thus, by definition, the dual of the dual is the original primal.

From LP Duality to Minimax

(Minimax Theorem) For every two-player zero-sum game A,

$$
\max _{\mathbf{x}}\left(\min _{\mathbf{y}} \mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)=\min _{\mathbf{y}}\left(\max _{\mathbf{x}} \mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)
$$

- We now proceed to derive the Minimax Theorem from LP duality.
$>$ The first step is to formalize the problem of computing the best strategy for the max-player:

$$
\max _{\mathbf{x}}\left(\min _{\mathbf{y}} \mathbf{x}^{T} \mathbf{A} \mathbf{y}\right)=\max _{\mathbf{x}}\left(\min _{j=1}^{n} \mathbf{x}^{T} \mathbf{A} \mathbf{e}_{j}\right)=\max _{\mathbf{x}}\left(\min _{j=1}^{n} \sum_{i=1}^{m} a_{i j} x_{i}\right)
$$

Why? Because the min-player never needs to randomize.
where \mathbf{e}_{j} is the j th standard basis vector, corresponding to the column player deterministically choosing column j.

From LP Duality to Minimax

$\max _{\mathbf{x}}\left(\min _{\mathbf{y}} \mathbf{x}^{T} \mathbf{A y}\right)=\max _{\mathbf{x}}\left(\min _{j=1}^{n} \mathbf{x}^{T} \mathbf{A} \mathbf{e}_{j}\right)=\max _{\mathbf{x}}\left(\min _{j=1}^{n} \sum_{i=1}^{m} a_{i j} x_{i}\right)$,

- To get rid of the nested max/min, we recall a trick from before, that a minimum or maximum can often be simulated by additional variables and constraints. The same trick works here, in exactly the same way:
- Specifically, we introduce a decision variable v, intended to be equal to $\min _{j=1}^{n} \sum_{i=1}^{m} a_{i j} x_{i}$ and we will have:

$$
\begin{aligned}
& \max v \\
& \text { subject to } \\
& v-\sum_{i=1}^{m} a_{i j} x_{i} \leq 0 \quad \text { for all } j=1, \ldots, n \\
& \sum_{i=1}^{m} x_{i}=1 \\
& x_{1}, \ldots, x_{m} \geq 0 \quad \text { and } \quad v \in \mathbb{R} .
\end{aligned}
$$

- Note that this is a linear program with optimal $\left(v^{*}, x^{*}\right)$.

From LP Duality to Minimax

- Repeating the exercise for the column player gives the linear program:
$\min w$
subject to
$w-\sum_{j=1}^{n} a_{i j} y_{j} \geq 0 \quad$ for all $i=1, \ldots, m$
$\sum_{j=1}^{n} y_{j}=1$
$y_{1}, \ldots, y_{n} \geq 0 \quad$ and $\quad w \in \mathbb{R}$.

At an optimal solution $\left(w^{*}, \mathbf{y}^{*}\right), \mathbf{y}^{*}$ is the optimal strategy for the column player, assuming optimal play by the row player and

$$
w^{*}=\min _{\mathbf{y}}\left(\max _{i=1}^{m} e_{i}^{\top} \mathbf{A y}\right)=\min _{\mathbf{y}}\left(\max _{\mathbf{x}} \mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right) .
$$

Here's the punch line: these two linear programs are duals.
This can be seen by looking up our recipe for taking duals and verifying that these two linear programs conform to the recipe

- You will do this verification as an Exercise!
- Accepting this,

$$
\text { Strong duality implies that } v^{*}=w^{*} ;
$$

