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LP Duality and the Minimax Theorem

Game Theory
Lecture 09



2

A toy example to illustrate duality

• What's an easy and convincing proof that the optimal objective
function value of the linear program can't be too large?

• But actually, it's obvious that we can do better by using the second 
constraint instead:

• Can we do better? 

 There's no reason we need to stop at using just one constraint at a 

time, and are free to blend two or more constraints. 

 This is a convincing proof that the optimal objective function value is at most 

5/7. Given the feasible point (3/7;2/27) that actually does realize this upper 
bound, we can conclude that 5/7 really is the optimal value for the LP.

 The best blending takes 1/7 of the first and 3/7 of the second to give:
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The Dual Linear Program
• We now generalize the ideas of the previous slide. Consider an 

arbitrary linear program (call it (P)) of the form:

Matrix-Vector Notation

where c and x are n-vectors, b is

an m-vector, A is an mxn matrix

(of the aij's), and the inequalities
are component-wise.

• Remember our strategy for deriving upper bounds on the optimal

objective function value of our toy example:

 take a nonnegative linear combination of the constraints that

(component-wise) dominates the objective function.

 In general, for the above linear program with m constraints, we

denote by y1, …, ym≥0 the corresponding multipliers that we use.
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The Dual Linear Program (Cont’d)
• The goal of dominating the objective function translates to the 

conditions
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• Alternatively, the derivation may be more transparent in matrix-

vector notation:

The Dual Linear Program (Cont’d)

• Obviously, the most interesting of these upper bounds is the tightest

(i.e., smallest) one. So we really want to range over all possible y's

and consider the minimum such upper bound.

• Here's the key point: the tightest upper bound on OPT is itself the

optimal solution to a linear program. Namely:
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The Dual Linear Program (Cont’d)

DUAL
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Weak Duality
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• Complementary slackness conditions are a corollary of LP

duality, and are another sufficient condition for optimality.

• Let (P),(D) be a primal-dual pair of linear programs.

 If x, y are feasible solutions to (P),(D), and the following

two conditions hold then both x and y are optimal:

• The conditions assert that no decision variable and

corresponding constraint are simultaneously “slack" (i.e., it

forbids that the decision variable is not 0 and also the

constraint is not tight).

Physical interpretation of complementary slackness

• The objective function pushes a particle in the direction c until it

rests at x*. Walls also exert a force on the particle, and

complementary slackness asserts that only walls touching the

particle exert a force, and sum of forces is equal to 0.
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Proof: Complementary slackness  optimality
• Recall for every pair x, y of feasible solutions to (P),(D), we have

• From the first complementary slackness condition, we have:

• Similarly, the second condition implies that:
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• As we've mentioned, different types of linear

programs are easily converted to each other.

• So one perfectly legitimate way to take the dual of

an arbitrary linear program is to first convert it into

the canonical form, and then apply the duality

definition.

• But it's more convenient to be able to take the dual

of any linear program directly, using a general

recipe. The high-level points of the recipe are

familiar:

 dual variables correspond to primal constraints,

 dual constraints correspond to primal variables,

maximization and minimization get exchanged,

 the objective function and right-hand side get

exchanged,

 and the constraint matrix gets transposed.

 The details concern the different type of

constraints (inequality vs. equality) and whether
or not decision variables are nonnegative.
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• Here is the general recipe for maximization linear programs:

• For minimization linear programs, we define the dual as 

the reverse operation (from the right column to the left).

• Thus, by definition, the dual of the dual is the original 

primal.
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From LP Duality to Minimax

• We now proceed to derive the Minimax Theorem from

LP duality.

 The first step is to formalize the problem of

computing the best strategy for the max-player:

Because the min-player never needs to 

randomize.

Why? 
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• Specifically, we introduce a decision variable v, intended

to be equal to

From LP Duality to Minimax

• To get rid of the nested max/min, we recall a trick from

before, that a minimum or maximum can often be

simulated by additional variables and constraints. The

same trick works here, in exactly the same way:

and we will have:

• Note that this is a linear program with optimal (v*, x*).
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• Repeating the exercise for the column player gives the

linear program:

From LP Duality to Minimax

• You will do this verification as an Exercise!

• Accepting this,


